Mean-variance Hedging in the Discontinuous Case

نویسنده

  • Jianming Xia
چکیده

The results on the mean-variance hedging problem in Gouriéroux, Laurent and Pham (1998), Rheinländer and Schweizer (1997) and Arai (2005) are extended to discontinuous semimartingale models. When the numéraire method is used, we only assume the Radon-Nikodym derivative of the variance-optimal signed martingale measure (VSMM) is non-zero almost surely (but may be strictly negative). When discussing the relation between the solutions and the Galtchouk-Kunita-Watanabe decompositions under the VSMM, we only assume the VSMM is equivalent to the reference probability. JEL Classification: G1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean-Variance Hedging Under Partial Information

We consider the mean-variance hedging problem under partial Information. The underlying asset price process follows a continuous semimartingale and strategies have to be constructed when only part of the information in the market is available. We show that the initial mean variance hedging problem is equivalent to a new mean variance hedging problem with an additional correction term, which is ...

متن کامل

Mean-Variance Hedging under Additional Market Information

In this paper we analyse the mean-variance hedging approach in an incomplete market under the assumption of additional market information, which is represented by a given, finite set of observed prices of non-attainable contingent claims. Due to no-arbitrage arguments, our set of investment opportunities increases and the set of possible equivalent martingale measures shrinks. Therefore, we obt...

متن کامل

Hedging strategies of Energy Commodities

The paper examines the issue of hedging in energy markets. The objective of this study is to select an optimal model that will provide the highest price risk reduction for the selected commodities. We apply the ordinary least squares methods, autoregressive model, autoregressive conditional heteroscedasticity and copula to calculate the appropriate dynamic minimum-variance hedge ratio. The obje...

متن کامل

Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean-Variance Hedging

We obtain the global existence and uniqueness result for a one-dimensional backward stochastic Riccati equation, whose generator contains a quadratic term of L (the second unknown component). This solves the one-dimensional case of BismutPeng's problem which was initially proposed by Bismut (1978) in the Springer yellow book LNM 649. We use an approximation technique by constructing a sequence ...

متن کامل

Hedging discontinuous stochastic volatility models

We consider a stochastic volatility model with jumps where the underlying asset price is driven by a process sum of a 2-dimensional Brownian motion and 2-dimensional compensated Poisson process. The market is incomplete, there is an infinity of Equivalent Martingale Measures (E.M.M) and an infinity of hedging strategies. We characterize the set of E.M.M, and we hedge by minimizing the variance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006